

DRAKE[®] 4630 PAI

Bearing and Wear Grade for Dry Service

DESCRIPTION

DRAKE 4630 PAI provides the maximum wear resistance in high speed, non-lubricate applications. It has been proven to perform in applications with PVs exceeding 150,000 psi-FPM.

TYPICAL APPLICATIONS:

• Thrust washers

• Sliding vanes

Piston seal rings

Bearings & bushings

Material Notes: The wear rate and limiting PV for machined parts can be improved by post curing parts after machining to achieve optimum wear resistance on the part's outer surfaces.

EXTRUDED SHAPES PROPERTIES

PHYSICAL PROPERTIES	METRIC	IMPERIAL	METHODS
Specific Gravity	1.56 g/cc	0.056 lb/in ³	ASTM D792
Water Absorption	0.2%	0.2%	Immersion, 24hr; ASTM D570(2)
Water Absorption at Saturation	1.5%	1.5%	Immersion; ASTM D570(2)
MECHANICAL PROPERTIES*			
Hardness, Rockwell M		M106	ASTM D785
Hardness, Rockwell		E62	ASTM D785
Hardness, Shore D		84	ASTM D2240
Tensile Strength, Ultimate	83 MPa	12,000 PSI	ASTM D638
Elongation at Break	2%	2%	ASTM D638
Tensile Modulus	5520 MPa	800,000 PSI	ASTM D638
Flexural Modulus	5520 MPa	800,00 PSI	ASTM D790
Flexural Yield Strength	105 MPa	15,000 PSI	ASTM D790
Compressive Strength	125 MPa	18,000 PSI	10% Def.; ASTM D695
Compressive Modulus	5172 MPa	750,000 PSI	ASTM D695
Izod Impact (notched)	38 J/m	0.7 ft-lbs/in	ASTM D256 Type A
THERMAL PROPERTIES			
Glass Transition Temp./T _g	275° C	527° F	ASTM D3418
Heat Deflection Temperature (264 PSI)	278° C	532° F	ASTM TMA
Coefficient of Linear Thermal Expansion	3.0 x 10 ⁻⁵ C ⁻¹	1.7 x 10 ⁻⁵ F ⁻¹	E831 TMA

*The mechanical properties of extruded shapes may differ from the values published by resin producers. Published resin data is always generated from test specimens injection molded under optimum conditions. Drake's extruded shape values are generated using specimens machined from actual shapes and may reflect surface imperfections from machining, enhanced crystallinity as a result of processing, and fiber alignment inherent in all reinforced plastic shapes, regardless of process. For additional information on the effects of fiber alignment, see Drake Fiber Orientation Diagram, available on the Resource page of our website.